Exponential rise of dynamical complexity in quantum computing through projections
نویسندگان
چکیده
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
منابع مشابه
Monte Carlo simulations of 4d simplicial quantum gravity
Dynamical triangulations of four-dimensional Euclidean quantum gravity give rise to an interesting, numerically accessible model of quantum gravity. We give a simple introduction to the model and discuss two particularly important issues. One is that contrary to recent claims there is strong analytical and numerical evidence for the existence of an exponential bound that makes the partition fun...
متن کاملA Quantum Lattice-Gas Model for the Many-Particle Schrödinger Equation in d Dimensions
We consider a general class of discrete unitary dynamical models on the lattice. We show that generically such models give rise to a wavefunction satisfying a Schrödinger equation in the continuum limit, in any number of dimensions. There is a simple mathematical relationship between the mass of the Schrödinger particle and the eigenvalues of a unitary matrix describing the local evolution of t...
متن کاملA New Model Representation for Road Mapping in Emerging Sciences: A Case Study on Roadmap of Quantum Computing
One of the solutions for organizations to succeed in highly competitive markets is to move toward emerging sciences. These areas provide many opportunities, but, if organizations do not meet requirements of emerging sciences, they may fail and eventually, may enter a crisis. In this matter, one of the important requirements is to develop suitable roadmaps in variety fields such as strategic, ca...
متن کاملOptimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits
There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....
متن کاملEntropy estimates for Simplicial Quantum Gravity
Through techniques of controlled topology we determine the entropy function characterizing the distribution of combinatorially inequivalent metric ball coverings of n-dimensional manifolds of bounded geometry for every n _> 2. Such functions control the asymptotic distribution of dynamical triangulations of the corresponding n-dimensional (pseudo)manifolds M of bounded geometry. They have an ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014